http://en.wikipedia.org/wiki/Multiple_independently_targetable_reentry_vehicle
Multiple independently targetable reentry vehicle
A multiple independently targetable reentry vehicle (MIRV) warhead is a collection of nuclear weapons carried on a single intercontinental ballistic missile (ICBM) or a submarine-launched ballistic missile (SLBM). Using a MIRV warhead, a single launched missile can strike several targets, or fewer targets redundantly. By contrast a unitary warhead is a single warhead on a single missile.
Purpose
The military purpose of a MIRV is threefold:
Provides greater target damage for a given missile payload. Radiation (including radiated heat) from a nuclear warhead diminishes as the square of the distance (called the inverse-square law), and blast pressure diminishes as the cube of the distance. For example at a distance of 4 km from ground zero, the blast pressure is only 1/64th that of 1 km. Due to these effects several small warheads cause much more target damage area than a single large one. This in turn reduces the number of missiles and launch facilities required for a given destruction level - much the same as the purpose of a conventional submunition.
With single warhead missiles, one missile must be launched for each target. By contrast with a MIRV warhead, the post-boost (or bus) stage can dispense the warheads against multiple targets across a broad area.
Reduces the effectiveness of an anti-ballistic missile system that relies on intercepting individual warheads. While a MIRV attacking missile can have multiple (3–12 on United States missiles and 3-10 on Russians) warheads, interceptors may have only one warhead per missile. Thus, in both a military and an economic sense, MIRVs render ABM systems less effective, as the costs of maintaining a workable defense against MIRVs would greatly increase, requiring multiple defensive missiles for each offensive one. Decoy reentry vehicles can be used alongside actual warheads to minimize the chances of the actual warheads being intercepted before they reach their targets. A system that destroys the missile earlier in its trajectory (before MIRV separation) is not affected by this but is more difficult, and thus more expensive to implement.
Accuracy is crucial, because doubling the accuracy decreases the needed warhead energy by a factor of four for radiation damage and by a factor of eight for blast damage. Navigation system accuracy and the available geophysical information limits the warhead target accuracy. Some writers believe that government-supported geophysical mapping initiatives and ocean satellite altitude systems such as Seasat may have a covert purpose to map mass concentrations and determine local gravity anomalies, in order to improve accuracies of ballistic missiles. Accuracy is expressed as circular error probable (CEP). This is simply the radius of the circle that the warhead has a 50 percent chance of falling into when aimed at the center. CEP is about 90–100 m for the Trident II and Peacekeeper missiles[citation needed].